Integration of CCS systems with gas turbines

Dr Richard Marsh
Cardiff University
School of Engineering
Gas Turbine Research Centre

APGTF 20/02/13

Introduction

- Combined Cycle Gas Turbines (CCGTs) account for 40% of UK's generation potential.
- Likely that this figure will grow, plus gas turbines will be used as stand-by cover for renewables.
- Power generation GTs are sensitive to changes in air momentum and fuel composition, thus major configuration changes associated with CCS must be carefully planned.

Post-Combustion Capture: CO₂ scrubbing after HRSG

- The CCGT-CCS plant exhaust is likely to be comparatively low in CO₂ concentration, increasing size and complexity of scrubbers.
- There will be some dynamic effects on the G-T's operation:
 - Steam will not always be available to the CO₂ scrubber during GT start up.
 - For the CO₂ scrubber to function optimally, the GT will have to reach operating levels very quickly.
 - Likely that these plants will be used for peaking applications, adding more focus on condition changes.
- Hence there will be challenges with <u>operational flexibility</u> and <u>system stability</u>.

Pre-Combustion Capture: Gasification for H₂ rich fuels FP7

- The fuel will have a different heating value: density ratio than that of nat. gas. Thus the G-T will need to take account of the momentum differences between different fuels.
- The burning velocity of hydrogen is much higher than nat. gas, which is likely to cause flashback. Thus fuel composition is crucial.

Post-Combustion Capture: Oxy – CCGT UKCCSRC Project.

The flame temperature is controlled by diluting the oxygen with either steam or CO₂.

Engineering and Physical Sciences Research Council

- The key challenges are:
 - The aerodynamic design of the gas turbine, which must be modified because of the difference in working fluid properties from that of air.
 - The modification of the combustion process, particularly peak temperatures in the combustion chamber and downstream.

Summary

- Research is therefore needed as follows:
 - Operational flexibility and stability of gas turbines when integrating with post-CCS systems, especially during sudden start-up / shut-down.
 - Stability of operation with high H₂ fuels, plus flexibility to employ a variety of H₂ / CH₄ blends.
 - Sustained operation with oxyfuel systems and recycled CO₂ for thermal moderation.