

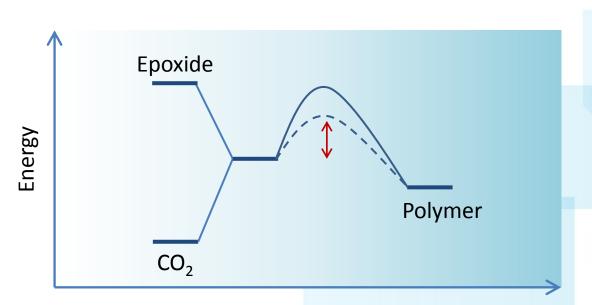
CO₂ Use in Plastic Materials

Dr Michael Kember

13th Annual APGTF Workshop

Carbon Capture with Compelling Economics

- SME from Imperial College London Chemistry Department
- Proprietary catalyst technology
- Enables use of CO₂ to form polymers
- Displaces up to 50% of conventional, petrochemical feedstock with CO₂
- Cost of traditional feedstocks:
 ~\$2,000/t
- Cost of CO₂: free (\$50/t to capture and process)



CO₂ as a Feedstock for Polymers

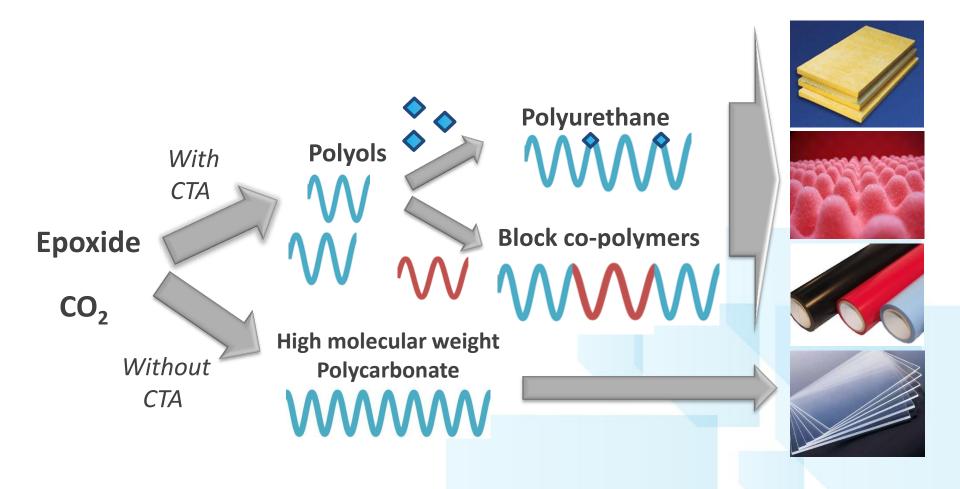
- CO₂ is cheap but unreactive
- Energy required for transformation
- Energy barrier to polymer must be lowered:

Catalyst required

Polymerisation Catalyst

Polymers made of alternating epoxide and CO₂ molecules

Production of polycarbonates from CO₂ using an epoxide and a copolymerisation catalyst



Econic Catalysts

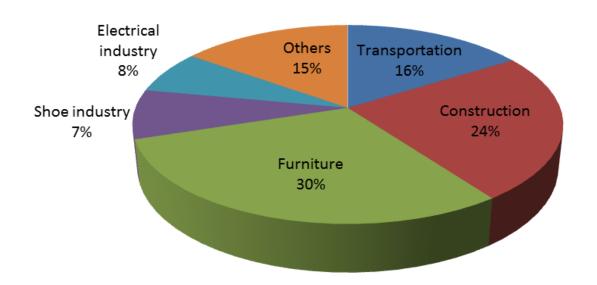
- High CO₂ incorporation (>99% of theoretical max)
- Low by-product formation
- Active under low (1 bar) CO₂ pressures
- Made from cheap, non-toxic metals (Mg, Zn)
- Cheap, easy synthesis (few steps from common bulk chemicals)
- Display high tolerance to water

Route to Products

Economic Opportunity

Raw material savings for polyols

All prices in \$	Polyol	Raw material 1	Price of RM 1	Raw material 2	Price of RM 2	Total raw material cost	Potential savings
Convent- ional	Polypropylene oxide	РО	1 950	-	-	1 950	-
Econic Process	PCHC	СНО	2 200	CO ₂	50	1 550	400
	Mixed epoxide	13% PO 87% CHO	2 150	CO ₂	50	1 450	500
	PPC	РО	1 950	CO ₂	50	1 150	800


Raw material costs for a common commercially available polyol and several Econic products: poly(propylene carbonate) (PPC), poly(cyclohexene carbonate) (PCHC) and a mixed epoxide polycarbonate (CHPPC) polyol.

Costs rounded to the nearest \$50.

Markets

- Total world polyurethane market is 15 million t p.a. and projected to grow.
- Over 2/3rd potentially addressable by Econic polymers

Market share for applications of polyurethanes (Kunststoffe)

DECC grant

- Received £100k DECC funding from competition to reduce CCS costs - November 2012
- Feasibility study with CO₂ from CCS pilot at Ferrybridge
- Assessment of catalyst stability to common impurities: H₂O, O₂, N₂, SO_x, NO_x...

Conclusion

 Econic is building a business on a unique suite of catalysts that offer a compelling economic solution to the environmental problem of CO₂ emissions.

