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What i1s the motivation for flexible CCS?
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« Operating scenario for a fortnight in 2012 (top) and 2050 (bottom) assuming
central government scenarios for growth in renewable output

* Note the radical changes to the net demand that will be supplied by thermal power
stations, after wind and nuclear output is subtracted.

Acknowledgement: Dr I. Staffell, Imperial College London



What i1s the motivation for flexible CCS?




What i1s the motivation for flexible CCS?
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UK in 2050, 14% of vehicles are EV, smart charging over night and electrification of
commercial and residential heating

» \ery aggressive scenarios of EV adoption, smart charging and electrification, yet still
significant variability in demand profile

» Unlikely that this will mitigate the effect of mass deployment of intermittent renewables

Acknowledgement: Dr I. Staffell, Imperial College London



How do coal fired power plants behave?
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« 6 main types of typical load factor in the UK in 2012

— Data source: Elexon BM Unit data, available from http://www.elexon.co.uk/
» Focus on load following in this talk
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Multi-scale problem: multi-scale solution
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Integrated power and capture plant modelling
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What Is the short run marginal cost of electricity?
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* Prices taken from DECC’s central 2030 scenarios



Typical electricity price variation
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 The opportunity cost associated with the
; operation of the capture plant varies

Integrated power-capture plant to exploit



How to maximise profits?

Multi-period process design and operation

Model

Realistic System Constraints
e.g., steam availability
Integrated Degree of
Capture > 90%

Process design
Operation in each period
Duration of each period

=12,..NP



3 Case studies

1. Conventional load following

Power plant ramps up and down with demand
Capture plant follows — constant L/G and 0,
Steady state optimisation aimed at the design point

2. Solvent storage

Power plant ramps up and down with demand

Capture plant is decoupled — store a fraction (egg) of the solvent
during peak operation, regenerate off peak

Piecewise linear optimisation with continuity (egg, L/G)

3. Variable regeneration

Power plant ramps up and down with demand

Capture plant is decoupled — vary the regeneration rate in sympathy
with electricity prices

Dynamic optimisation problem: non-linear parameterisation of
control variables (0, .., L/G)



1. Conventional

Interested in the integrated
degree of capture (IDoC)

= ()
Determine process design and
operation to maximise
cumulative profit

Variation in DoC owing to
fluctuation in a,., with varying
liquid circulation rate

No variation in operation —
constant L/G and 0, ., at all
periods

Profit margin (and thus
opportunity cost) is greatest at
peak times

Important sensitivity to carbon
cost!
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 Continuous piecewise-
linear multi-period
optimisation

Maximise cumulative profit
over entire simulation

6 time periods

Determine storage fraction for
each period

S.t. IDoC > 90%, m <
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Regenerate solvent during off-
peak

Store solvent for peak hours

Only 10% storage for the peak
hours was possible —

insufficient steam for off-peak
solvent regeneration otherwise

IDoC ~ 91%
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3. Variable regeneration

« Dynamic optimisation
— Maximise cumulative profit - 100
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How do the three options compare?
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« Time varying solvent regeneration allows for a high IDoC
— Perhaps higher IDoC than otherwise..?

* Perhaps more promising for “flexible CCS” than storage
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How do the three options compare?
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Solvent storage appears essentially indistinguishable from normal operation
Time varying solvent regeneration appears to increase overall profits by ~ 10%

Flexibility doesn’t appear to increase the overall carbon intensity of the power plant



Future questions?

What are the flexibility limiting links in the CCS
chain?

What are the feedbacks from storage operations
on the operation of the power plant?

Does flexible CCS occupy the same position on

the electricity supply curve as “baseload” CCS —
what gets displaced?

Flexibility vs. efficiency - are there policy
Implications, e.g., strike-prices?



